Environmental Data Science Concept Checklist

December 9, 2021

DISCIPLINE Topic Subtopic Core Concept

MATHEMATICS

Calculus

- Derivatives
- Integration
- Polar coordinates
- Complex numbers
- Gradient
- 🗆 Limits
- □ Sequences
- □ Series
- D Multiple integrals
- □ Vector calculus
- Partial derivatives
- Differential equations
- 🗆 Jacobian matrix
- 🗆 Hessian matrix

Linear Algebra

Systems of linear equations
Vectors
Matrix multiplication
Projection
Inner products
Outer products
Trace, rank, and transpose
Linear independence
Linear transformations
Determinant
Matrix inversion
Change of basis
Singular values
Eigenvalues and Eigenvectors
Orthogonality

MACHINE LEARNING & STATISTICS

Probability & Statistics

Probability Theory

- □ Set theory
- _ Sample spaces
- □ Axioms of Probability
- □ Combinatorics
- Conditional probability
- □ Correlation
- 🗆 Covariance
- □ Expected value
- Mean, median, standard deviation, and variance
- Order statistics

Random Variables

- Discrete and continuous distributions
- Probability mass/density function (PDF)
- Cumulative distribution function / hazard function
- Joint density
- Moment generating function
- Characteristic function

Discrete Probability Distributions

- 🗆 Bernoulli
- 🗆 Binomial
- □ Geometric
- Poisson
- Negative binomial
- □ Hypergeometric

Continuous Probability Distributions

- Normal/Gaussian
 Uniform
 Exponential
 Chi-squared
 Student's t
 Weibull
 Beta
 Gamma
 F
 Joint Probability Distributions
 Multinomial
 Multivariate normal
 Dirichlet
- 🗆 Wishart

Density Estimation

- Mixture Model
 Gaussian Mixture Model
 Kernel Density Estimation
 Parzen Window
- Goodness-of-fit Tests
- □ All parameters known
- □ All parameters unknown
- □ Analysis of Variance
- Multiple comparisons (Tukey's Method)
 F-test

Hypothesis Testing

- □ Type I and Type II Errors
- □ Likelihood ratio test
- Generalized likelihood ratio

1

□ Two sample t test □ Power of the Test

Estimation

Degrees of Freedom

□ Interval estimation

- Maximum Likelihood
- Method of Moments
- □ Minimum variance estimators
- Sufficient Statistics

Bayesian Statistics

- 🗆 Bayes' Theorem
- Conjugate prior
- Evidence approximation
- □ Non informative priors

Nonparametric Statistics

- 🗆 Friedman Test
- □ Kruskal-Wallis Test
- 🗆 Sign Test
- □ Testing of Randomness
- U Wilcoxon test

Information theory

- Mutual information
- □ Entropy
- Kullback-Leibler divergence

Variable / Feature Selection

Resampling Methods

- 🗆 Bootstrap
- □ K-fold cross validation
- \square Leave one out cross validation
- □ Markov Chain Monte Carlo (MCMC)
- □ Gibbs sampling
- 🗆 Jackknife

Dimensionality Reduction

- □ Curse of dimensionality
- □ Principal components regression
- Partial least squares

□ Best subset selection

Regularization / Shrinkage

Supervised Learning

□ Confidence intervals

□ R squared statistic

Nonlinear Regression

□ Stepwise selection

□ Ridge Regression

Linear Regression

□ Least Squares

□ Correlation

□ P-value

Residual

n t-statistic

Subset Selection

🗆 Lasso

Environmental Data Science Concept Checklist

Polynomial Regression

- □ Nonparametric regression
- Generalized additive models
- Generalized linear model
- Regression Splines
- □ Smoothing Splines
- □ Local regression
- □ Fixed effects model
- Random effects model
- □ Mixed effects model
- □ Basis Functions
- □ Step Functions

Performance Evaluation

- □ Sensitivity
- □ Specificity
- □ Test and Training Error
- □ Bias/Variance Tradeoff
- □ Confusion Matrix
- Receiver Operating
 Characteristic (ROC) curve

Decision Theory

- Likelihood Ratio Test
- D Minimax criterion
- □ Committees
- Decision fusion

Density Estimation

- □ Mixture Model
- 🗆 Gaussian Mixture Model
- Kernel Density Estimation
- Minimax criterion
- Parzen Window

Graphical Models

- □ Markov Models
- Hidden Markov Models
 Bayesian Belief Network
- □ Markov Random Fields

Other Classification Methods

- □ K Nearest Neighbors
- 🗆 Linear Discriminant Analysis
- □ Fisher's linear discriminant
- □ Bayes Classifier

Naïve Bayes Classifier

- Quadratic Discriminant Analysis
- Partial Least Squares
- Discriminant Analysis
- Fuzzy Classification
- Probit model

Other Regression Methods

Logistic Regression (Logit model)
 Multinomial Logistic Regression

Multinomial Logistic Regression Multiple Logistic Regression Relevance Vector Machines Multiple Linear Regression **Neural Networks** □ Perceptron □ Error Backpropagation □ Feed-forward network functions Recurrent Neural Networks **Support Vector Machines** □ Kernel Functions Maximal Margin Classifier □ Support Vector Classifier Separating hyperplane One versus all classification □ One versus one classification Polynomial kernel Radial kernel \square SVMs with more than 2 classes **Ensemble Methods** □ Bagging □ Boosting AdaBoost □ Stacking Bayesian Model Averaging **Classification and Regression Trees** (CART) Decision Trees □ Gini Index □ Out of Bag Error Estimation □ Tree Pruning □ Random Forests

Multiple Logistic Regression

Unsupervised Learning

Component Analysis

- Dimensionality Reduction
- □ Factor Analysis
- □ Principal component analysis
- Proportion of Variance Explained
- Independent component
- analysis – Kernel Principal Compo
- Kernel Principal Component Analysis
- Low-dimensional representations and Multidimensional scaling

2

□ Nonlinear component analysis

□ Self-organizing maps

Clustering K-means Clustering

- □ Hierarchical clustering
- □ Mean Shift

- Agglomerative hierarchical clustering
- Dendrograms
- Dissimilarity measures
- Expectation Maximization
- □ Inversion
- Linkages (complete, single, average, centroid)
- On-line clustering
- Stepwise-optimal hierarchical clustering

Model Selection & Evaluation

Performance criteria

□ Adjusted R squared

- □ Akaike Information Criterion
- Bayesian Information Criterion
- □ Mallow's Cp
- Variance Influence Factor

Common Data Challenges

Collinearity

- □ Multicollinearity
- □ Outliers
- □ High Leverage Points
- □ Heteroscedasticity

Selection techniques

- □ Forward Selection
- Backward Selection
- □ Mixed Selection

Time Series Modeling

Characteristics of Time Series

- □ Autocorrelation
- □ Cross-correlation
- □ Stationarity
- Partial Autocorrelation

Spectral Analysis and Filtering

Nonparametric Spectral

□ Autoregressive Models (AR)

□ Moving Average Models (MA)

□ Autoregressive Moving Average

Autoregressive Integrated Moving

- 🗆 Fourier Analysis / Fourier Transform
- Spectral Density

□ Periodogram

Estimation

Time series models

Models (ARMA)

□ Seasonal ARIMA

Average (ARIMA)

Wavelets

□ Smoothing

Environmental Data Science Concept Checklist

- Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Models
- Multivariate Autoregressive moving average with exogenous inputs (ARMAX) Models
- Lagged regression models
- □ State-space Models
- Dvnamic linear models with switching

Other Concepts

Other Statistical Learning **Approaches**

- Reinforcement Learning
- Online Learning
- Kernel Methods
- Anomaly Detection
- Multiple Instance Learning
- □ Bag of words model
- Network analysis
- □ Recommender systems

Principles

□ No free lunch theorem Occam's Razor

□ No Silver Bullet

Programming

Basic Concepts & Syntax

□ Data types □ Arrays □ File Input/Output □ Functions Logic and conditionals □ Loops □ Math and assignment operators □ Random number generation Regular Expressions Languages

□ Python $\square R$ MATLAB □ Shell scripting (e.g., Bash) 🗆 Julia Mathematica п С/С++ D FORTRAN n IDL

Numerical Analysis

□ Difference equations □ Interpolation

- Extrapolation
- □ Methods for solving linear and nonlinear systems of equations
- Monte Carlo methods
- Numerical integration
- □ Fourier analysis and spectral methods

Optimization

□ Gradient Descent

□ Linear Programming

- □ Lagrange Multipliers
- Boltzmann Learning
- □ Boltzmann networks
- Evolutionary methods
- Genetic algorithms
- Graphical models
- □ Simulated annealing
- □ Stochastic methods

Version Control

- n Git □ Branch
- Clone
- □ Commit
- □ Merae
- Push
- D Pull

Web Programming

- □ Application Programming Interface (API)
- Markdown language
- п CSS
- D HTML
- JavaScript
- **D** JSON
- □ Scalable Vector Graphics (SVG)
- n XML
- 🗆 LaTeX
- □ Model View Controller (MVC) architecture

Web Scraping

- DOM parsing
- HTML parsing Computer vision web-page analyzers
- □ Semantic annotation recognition

3

Databases

Relational Databases

n SQL □ Schema □ Queries

□ Insert, Update, Select, Delete

\square Joins

- □ Indexes
- Integrity constraints
- Authorizations
- Transactions
- Triggers
- Views

Big Data

- Distributed File Systems (i.e. Hadoop)
- □ Map Reduce
- n NoSQL
- □ Extract, Transform, Load (ETL)

Paradigms

Object-oriented programming

- Class
- □ Inheritance
- Methods
- □ Properties

Other approaches

- Functional programming
- □ Imperative programming

Natural Language Processing

- Optical character recognition (OCR)
- Grammatical Inference
- Parsing
- □ Part-of-speech tagging
- Sentiment analysis
- □ Topic segmentation

Visualization

Theory

□ Color theory

□ Gestalt Principles

Data-Ink Maximization

Techniques and Styles

□ Correlation analysis

□ Distribution analysis

Multivariate analysis

□ Time series analysis

□ Stacked time series

Geo-spatial analysis

□ Part-to-a-whole

□ Mapping

Rankings

Deviation analysis

□ Human visual perception

□ Small multiples

Data density

DATASETS

Remote Sensing

Landsat-7 & Landsat-8
MODIS Terra & Aqua
Sentinel-2
ICESat & ICESat-2

Re-Analysis

□ ERA-5 □ GLODAP

Other

□ CMIP5/6 output

Formats

Vector Data □ ESRI Shapefiles

Raster Data

□ GeoTIFF □ NetCDF

Tabular Data

□ CSV □ TSV

Other

□ JSON □ XML

Software & Tools

MS Excel
 ArcGIS (or QGIS)
 Climate Data Operators (CDO)
 NetCDF Opererators (NCO)

Workflow Management

SnakemakeContinuous Integration (CI)

—inspired by Kyle Bradbury's Data Science Concept Checklist)

